GRID_STYLE

NONE

ΡΟΗ:

latest

Σε άθλια κατάσταση αλλά ζωντανός ο Σταύρος Μαυρίδης, δήλωσε ότι θα αυτοκτονήσει...

Ζωντανός αλλά σε άθλια ψυχολογικά κατάσταση βρέθηκε το μεσημέρι της Κυριακή ο αγαπημένος «Φωτάκης» από τα εγκλήματα, ο ηθοποιός Σταύρος...


Ζωντανός αλλά σε άθλια ψυχολογικά κατάσταση βρέθηκε το μεσημέρι της Κυριακή ο αγαπημένος «Φωτάκης» από τα εγκλήματα, ο ηθοποιός Σταύρος Μαυρίδης.
Για 5 μέρες είχε εξαφανιστεί και ο καλός του φίλος Σπύρος Μπιμπίλας σήμανε συναγερμό.
Τον Σταύρο Μαυρίδη εντόπισε η ρεπόρτερ του Ε, αφού χτυπούσε επίμονα το κουδούνι του σπιτιού του στην Κυψέλη.
Ο ηθοποιός άνοιξε και ήταν ψυχολογικό ράκος, αγνώριστος, με άσπρα μαλλιά και μούσια. «Θα ανακοινώσω σύντομα την ημερομηνία που θα κάνω  την περίφημη αυτοκτονία μου» είπε επιλέξει.
«Ήθελα να εξαφανιστώ, δεν έχω κανέναν στη ζωή» είπε ο ίδιος. Ζήτησε ένα πακέτο τσιγάρα από την ρεπόρτερ και της είπε ξεκάθαρα ότι «δεν θέλει αυτή τη ζωή».
Επίσης, είπε ότι είναι απόρρητο γιατί δεν απαντούσε αλλά "θα φύγω εκτός Ελλάδας σε λίγες μέρες".
Η κατάσταση του ηθοποιού έχει θορυβήσει τους πάντες  και εκφράζονται φόβοι ότι αν δεν δεχθεί βοήθεια θα κάνει κακό στον εαυτό του.
Ο Σπύρος Μπιμπίλας είπε ότι κάτι περίεργο συμβαίνει γιατί πριν λίγο καιρό είχε κλείσει δουλειά στο θέατρο και ήταν πολύ χαρούμενος.
Ο Σταύρος Μαυρίδης, μετά την τεράστια επιτυχία του "Φωτάκη" στα εγκλήματα δεν ξαναβρήκε δουλειά ως ηθοποιός. ¨εκανε δουλειές "του ποδαριού" και είχε αποκτήσει σοβαρά ψυχολογικά προβλήματα. 

4 σχόλια

  1. Η διαφθορά είναι παντού, αλλά πουθενά δεν είναι τόσο κραυγαλέα και τόσο βαθιά ριζωμένη, όσο στους πέντε ακόλουθους κλάδους: Τράπεζες, Ενέργεια, Γεωργία / Biotech, Μέσα Μαζικής Ενημέρωσης και Υγειονομική Περίθαλψη...

    Ο τομέας που εμφανώς λείπει από αυτή την λίστα, βέβαια, είναι η πολιτική....
    Ο λόγος για τον οποίον η πολιτική δεν συμπεριλήφθηκε είναι επειδή η πολιτική διαφθορά πολύ σπάνια περιορίζεται στον πολιτικό στίβο... Είναι σχεδόν εξ ολοκλήρου το αποτέλεσμα των οικονομικών λόμπι και της υποστήριξης τους....

    Γι αυτό, λοιπόν, αποφασίσαμε να επικεντρωθούμε στις βιομηχανίες που βρίσκονται πίσω από το θέμα της διαφθοράς και όχι στους ίδιους τους πολιτικούς...

    Πραγματικά πιστεύω ότι πρέπει να σταματήσουμε να εθελοτυφλούμε αλλά και να ΣΤΑΜΑΤΉΣΟΥΜΕ της άκαρπες προσπάθειες που ΤΆΧΑ φέρουν την 'Αλλαγή' σήμερα χωρίς σύγκρουση ... Διότι Το τραπεζικό σύστημα, αν πραγματικά το δει κανείς λίγο πιο προσεκτικά, είναι η μεγαλύτερη απάτη που υπήρξε ποτέ....

    Με λίγα λόγια, μια Ομοσπονδιακή Τράπεζα δημιουργεί χρήμα (ηλεκτρονικές πιστώσεις, στην πραγματικότητα) από το πουθενά -επειδή έτσι θέλουν- και στη συνέχεια το πωλεί στις κυβερνήσεις με τόκο.....

    Όλο το χρήμα που τίθεται σε κυκλοφορία, είτε από Ομοσπονδιακή Τράπεζα, είτε από οποιαδήποτε άλλη ιδιωτική τράπεζα, είναι μέσω δανειακής πολιτικής που βασίζεται στους τόκους....

    Ως εκ τούτου, δημιουργείται ολοένα και περισσότερο χρέος στην οικονομία μας, παρά χρήμα... Αυτό δεν οφείλεται σε ανεύθυνο δανεισμό, αλλά είναι σύμφυτο με τους μηχανισμούς όλων των χαρτονομισμάτων.... Κάθε φορά που ένα δάνειο εξοφλείται, οι τόκοι (που είναι και ο πραγματικός πλούτος) μεταφέρεται από την εργατική τάξη στους έχοντες και κατέχοντες....Ως εκ τούτου, η διάρθρωση των τάξεων «κατασκευάζεται» απευθείας μέσα στο ίδιο το σύστημα....

    Αλλά και πάλι, αυτό δεν είναι απλά το αποτέλεσμα των άπληστων ανθρώπων στο πλαίσιο του Συστήματος, είναι μια πραγματικότητα πάνω στην οποία στηρίζεται ολόκληρη η έννοια του τραπεζικού συστήματος.... Χρήματα μας δανείζονται μόνο και μόνο για να υφίστανται αυθαίρετα επιτόκια, από ένα ιδιωτικό μονοπώλιο... Έχουν αξία μόνον επειδή, ένας νόμος λέει ότι έχουν αξία και η αξία αυξομειώνεται με βάση το πόση είναι η προσφορά στην οικονομία η οποία, που και πάλι, ελέγχεται από ένα κερδοσκοπικό μονοπώλιο ,Ο ΦΑΣΙΣΜΟΣ τον πλούσιων..ΠΙΑ ΔΗΜΟΚΡΑΤΊΑ;; !!!

    Η πραγματική αξία ΤΟΥ ΧΡΗΜΑΤΟΣ είναι το απόλυτο μηδέν, δεδομένου ότι είναι απλά ένα κομμάτι χαρτί με φανταχτερό μελάνι επάνω του...Ο πλούτος είναι η γης μας,η παραγωγή μας, το σπίτι μας, το νερό μας, ο ήλιος μας, ο ΑΕΡΑΣ ΜΑΣ, οι γνώσεις μας, η εργασία μας-- ΌΧΙ Η ΣΚΛΑΒΙΆ..Αυτά που θέλουν να μας τα πάρουν χωρίς να έχουν ΈΝΑ ΝΕΚΡΌ από το σινάφι τους..ΜΑ ΟΎΤΕ ΈΝΑ!!!!!!Όταν έχουμε ανθρώπους ΣΉΜΕΡΑ που μπορούν σήμερα, σε μια ήμερα να κατασκευάσουν βόμβες υδρογόνου;;;

    Uros...

    ΑπάντησηΔιαγραφή
  2. Τι έχουμε στα χέρια μας ΣΉΜΕΡΑ που δεν έχουν αυτοί και θα αναγκάσουμε να το χρησιμοποιήσουμε...Τα γράφω εδώ και ένα χρόνο σε αυτό το ταπεινό σαιτ μάλλον πρέπει να τους κάνουμε μια επιδείξει....
    -------------------------------

    ntanglement bonanza
    Relatively simple quantum computers could be much more powerful than previously realized.

    Larry Hardesty | MIT News Office
    November 18, 2016
    Press Inquiries
    SHARE

    COMMENT

    Quantum computers promise huge speedups on some computational problems because they harness a strange physical property called entanglement, in which the physical state of one tiny particle depends on measurements made of another...

    In quantum computers, entanglement is a computational resource, roughly like a chip’s clock cycles — kilohertz, megahertz, gigahertz — and memory in a conventional computer....

    In a recent paper in the journal Proceedings of the National Academy of Sciences, researchers at MIT and IBM’s Thomas J. Watson Research Center show that simple systems of quantum particles exhibit exponentially more entanglement than was previously believed. That means that quantum computers — or other quantum information devices — powerful enough to be of practical use could be closer than we thought...

    Where ordinary computers deal in bits of information, quantum computers deal in quantum bits, or qubits... Previously, researchers believed that in a certain class of simple quantum systems, the degree of entanglement was, at best, proportional to the logarithm of the number of qubits....

    “For models that satisfy certain physical-reasonability criteria — i.e., they’re not too contrived; they’re something that you could in principle realize in the lab — people thought that a factor of the log of the system size was the best you can do,” says Ramis Movassagh, a researcher at Watson and one of the paper’s two co-authors. “What we proved is that the entanglement scales as the square root of the system size. Which is really exponentially more.”
    That means that a 10,000-qubit quantum computer could exhibit about 10 times as much entanglement as previously thought. And that difference increases exponentially as more qubits are added.
    Logical or physical?

    This matters because of the distinction, in quantum computing, between logical qubits and physical qubits. A logical qubit is an abstraction used to formulate quantum algorithms; a physical qubit is a tiny bit of matter whose quantum states are both controllable and entangled with those of other physical qubits.

    A computation involving, say, 100 logical qubits would already be beyond the capacity of all the conventional computers in the world. But with most of today’s theoretical designs for general-purpose quantum computers, realizing a single logical qubit requires somewhere around 100 physical qubits. Most of the physical qubits are used for quantum error correction and to encode operations between

    Urow

    ΑπάντησηΔιαγραφή
  3. Τι έχουμε στα χέρια μας ΣΉΜΕΡΑ που δεν έχουν αυτοί και θα αναγκάσουμε να το χρησιμοποιήσουμε...Τα γράφω εδώ και ένα χρόνο σε αυτό το ταπεινό σαιτ μάλλον πρέπει να τους κάνουμε μια επιδείξει....
    -------------------------------

    logical qubits.
    Since preserving entanglement across large groups of qubits is the biggest obstacle to developing working quantum devices, extracting more entanglement from smaller
    clusters of qubits could make quantum computing devices more practical.

    Qubits are analogous to bits in a conventional computer, but where a conventional bit can take on the values 0 or 1, a qubit can be in “superposition,” meaning that it takes on both values at once.

    If qubits are entangled, they can take on all their possible states simultaneously. One qubit can take on two states, two qubits four, three qubits eight, four qubits 16, and so on. It’s the ability to, in some sense, evaluate computational alternatives simultaneously that gives quantum computers their extraordinary power.
    In the new paper, Peter Shor, the Morss Professor of Applied Mathematics at MIT, and Movassagh, who completed his PhD with Shor at MIT, analyze systems of qubits called spin chains.

    In quantum physics, “spin” describes the way a bit of matter — it could be an electron, or an atom, or a molecule — orients itself in a magnetic field. Shor and Movassagh consider bits of matter with five possible spin states: two up states, two corresponding down states, and a zero, or flat, state.

    Previously, theorists had demonstrated strong entanglement in spin chains whose elements had 21 spin states and interacted with each other in complex ways. But such systems would be extremely difficult to build in the lab.

    Chain, chain, chain
    A spin chain can be envisioned as a sequence of particles lined up next to each other. Interactions between the spins of adjacent particles determine the total energy of the system.

    Shor and Movassagh first considered the set of all possible orientations of their spin chain whose net energy was zero. That means that if somewhere there was a spin up, of either of the two types, somewhere there had to be a corresponding spin down.
    Then they considered the superposition of all those possible states of the spin chain. But the major breakthrough of the paper was to convert that superposition into the lowest-energy state of a Hamiltonian.

    A Hamiltonian is a matrix — a big grid of numbers — that figures in the standard equation for describing the evolution of a quantum system. For any given state of the particles in the system, the Hamiltonian provides the system’s total energy.
    In the previous 30 years, Movassagh says, no one had found an example of a Hamiltonian whose lowest-energy state corresponded to a system with as much entanglement as his and Shor’s exhibits. And even for Shor and Movassagh, finding that Hamiltonian required a little bit of luck.

    Uros

    ΑπάντησηΔιαγραφή
  4. Τι έχουμε στα χέρια μας ΣΉΜΕΡΑ που δεν έχουν αυτοί και θα αναγκάσουμε να το χρησιμοποιήσουμε...Τα γράφω εδώ και ένα χρόνο σε αυτό το ταπεινό σαιτ μάλλον πρέπει να τους κάνουμε μια επιδείξει....λέτε να μην ξέρουν ότι όλα τα συστήματα ασφαλείας τους είναι ΝΕΚΡΆ αν το θελήσουμε ΑΥΡΙΟ...οι κώδικες τους πάνε περίπατο, διότι πάμε πίσω και κάνομε αντιστροφή ύλης αλλά πιάνομε και ότι στείλουν ΤΏΡΑ και τους τα γυρίζουμε
    --------------------------------------------------------------
    “Originally, we wanted to prove a different problem,” Movassagh says. “We tried to come up with a model that proved some other theorem on generic aspects of entanglement, and we kept failing. But by failing, our models became more and more interesting. At some point, these models started violating this log factor, and they took on a life of their own.”

    Pros and cons

    “It’s a beautiful result, a beautiful paper,” says Israel Klich, an associate professor of physics at the University of Virginia. “It certainly made for a lot of interest in some parts of the physics community. The result is in fact very, very succinct and simple. It’s a relatively simple Hamiltonian whose ground state one can understand by simple combinatorial means.”

    “Inspired by this work, we recently introduced a new variation on this model that is even more entangled, which has, actually, linear scaling of entanglement,” Klich adds. “The reason this was possible is that if you look at the ground state wave function, it’s so easy to understand how entanglement builds up there, and that gave us the idea of how to string it on to be even more entangled.”

    But John Cardy, an emeritus professor of physics at Oxford University and a visiting professor at the University of California at Berkeley, doesn’t find the MIT researchers’ Hamiltonian so simple. “If you read the description of the Hamiltonian, it takes a lot of description,”

    he says. “When we have physically reasonable Hamiltonians, we can just write them down in one expression.

    They do have an equation that tells you what the Hamiltonian is. But to explain what all those ingredients are requires this whole formalism that is deliberately designed, as far as I can tell, to get the result that they want.”

    “But I don’t want to sound unduly negative, because this is the way that science proceeds,” he adds. “You find one counterexample, then you might find others that are more reasonable.”

    Larry Hardesty | MIT Ειδήσεις Γραφείο
    18 του Νοέμβρη, 2016

    Uros

    ΑπάντησηΔιαγραφή

ΠΡΟΣΟΧΗ! Την ευθύνη για το περιεχόμενο των σχολίων φέρει αποκλειστικά ο συγγραφέας τους και όχι το site. Η ανάρτηση των σχολίων μπορεί να έχει μια μικρή χρονική καθυστέρηση